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Figure 6.6: Comparison of n /p and p /n diode I-V curves with a
uniform g = 1.25 x 1022 cm™3 71,
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g (i+1) = X, + (X; - 1) In(1 + y(i)/xl)' (for Case 1) (C4)

which converges for any initial guess selected from the interval
[X5,®©). The suggested initial guess is

v(0) = Xq (for Case 1) .

convergence of the iteration (C4) can be very slow in theory. In
practice, Case 1 is accompanied by X;=1 and the convergence is
fast. An error estimate associated with any given iterate is
obtained by manipulating (C1) into

Y =¥ 4 [(Xy + X9)/(Xp + 1)) [Xp + (X3 - 1) In(1 + ¥/Xq) = Y] .

The actual solution Y and all iterates produced by (C4) are in
the interval (X,,®). Differentiating shows that the right side of
the above equation is decreasing in Y on this interval (or con-
stant if X;=1). Therefore the right side maps iterates that are
too small into estimates that are too large and vice-versa. The
correct solution is bracketed by any iterate v(1) and its conju-
gate Yc(l) defined by

o) = (i)

+ [ (Xy+Xq) / (Xp+1) ] [X,+(X;-1) In(1+y (1) /) - v(1)]  (for case 1) .

The difference between v(1) ana Yc(i) is a simple error estimate.

Case 2 is defined by

0 < Xy < 1 and

Xp > 2 + (1 - Xq) In(1 + X5 /%q) (defines Case 2) .

It can be shown that Case 2 implies that ¥>2, or P>p, in (C2).
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This case is encountered when there is an AR and HRR (A<p,/2) and
we want to use (C2) to solve for P at some point in the AR not
too close to the ARB. The iteration is
" .
YD) = v 4 (%, + %) /(X + 1)) [X,
+ (X, - 1) In(1 + YA /x) - v(d) (for Case 2)

which converges for any initial guess selected from the interval
[2,X,]. The suggested initial guess is

¥(0) = % (for Case 2) .

The conjugate of a given iterate is either the next or previous
iterate, i.e., the solution is bracketed between any pair of
adjacent iterates.

Case 3 is defined by

0 <X; <1and
and is encountered when there is an HRR and we want to use (C2)

to solve for P at a point close to and on either side of the ARB
(a transitional region). The iteration is

g(1+1) _ y(d)

- (1/2) (¥® + @@ - xp) 1n(z + v@) x) - x,) (for Case 3)

which converges for any initial guess selected from the interval
[1/2 -X,,X5]. Note that 1/2 -X; can be the initial guess even
when negative, but it is not a very good guess when negative. The
suggested initial guess is
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y(0) = Xy (for Case 3) .

The solution is bracketed by any iterate v(1) and its conjugate
Yc(l) defined by

Yc(l) Xz - (1 - Xq) In(1 + Y(l)/xl)' (for Case 3) .
Note that the iteration can be written more concisely as
y(i+1) = (172) v + v (1) (for Case 3) .

Case 4 is defined by

0 < xl < 1 and

0<%, € (1-%) In[(1 = X;)/%;] (defines Case 4) .

This case will be encountered when there is a wide HRR and we
want to use (C2) to solve for P at some point in the HRR not too
close to the ARB. The iteration is

y(i+1) = (1/2) [Y(i) - X4]

¥ (X1/2) exp[ (X, - Y(3))/ (1 - %9)) (for Case 4)

which converges for any initial guess selected from the interval
[0,1]. The suggested initial guess is

Y(O) =0 (for Case 4) .

The solution is bracketed by any iterate v(1) and its conjugate
Yc(1) defined by
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vo (1) = X, exp[(X, - ¥(1)) /1 - X1)] - Xq (for Case 4) .
Note that the iteration can be written more concisely as
Y(i+1) = (1/2) [Y(i) + Yc(i)] (for Case 4) .

The following function subprogram can be appended to a FORTRAN
source code, allowing the code to call the function F as it would
call any built-in function. The iterations are terminated when
error estimates indicate that the sum F(X1,X5)+X,; has an error
less than one part per ten thousand. The number of iterations
needed to produce this accuracy depends on the individual case.
The number can be as large as twelve or thirteen (comparable to
the bisection method) or as small as two or three.

FUNCTION F(X1,X2)

C This function subprogram can be appended to a FORTRAN source
C code, allowing the code to call the function F defined in the
C text. X1 must be positive and X2 must be nonnegative.
O
DELTOL=1.0E-4
C
C Check for illegal arguments.
&
IF (X1.LE.0.0) THEN
WRITE(*,*) 'ERROR: X1 IS NOT POSITIVE'
GO TO 100
END IF
IF (X2.LT.0.0) THEN
WRITE(*,*) 'ERROR: X2 IS NEGATIVE'
GO TO 100
END IF
c
C Determine which of the four cases apply and go to the
C appropriate block.
C
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IF (Xl.GE.l.O) GO TO 10
XH=2.0+(1.0-X1) *ALOG(1.0+X2/X1)
XL=(1.0-X1) *ALOG( (1.0-X1) /X1)
IF (X2.GT.XH) GO TO 30
IF ((X2.LE.XH).AND.(X2.GT.XL)) GO TO 50
GO TO 70
C
C Case 1 block starts here.
C
10 CONTINUE
¥=X2
20 CONTINUE
Y=X2+(X1-1.0) *ALOG(1.0+Y/X1)
T=X2+(X1-1.0) *ALOG(1.0+Y/X1)-Y
YC=Y+ (X2+X1) *T/ (X2+1.0)
ERROR=ABS (Y-YC) / (Y+X1)
IF (ERROR.GT.DELTOL) GO TO 20
GO TO 90
c _
C Case 2 block starts here.
C
30 CONTINUE
Y=X2
40 CONTINUE
YC=Y
T=X2+(X1-1.0) *ALOG(1.0+Y/X1) =Y
Y=Y+ (X2+X1) *T/ (X2+1.0)
ERROR=ABS (Y-YC) / (Y+X1)
IF (ERROR.GT.DELTOL) GO TO 40
GO TO 90
C
C Ccase 3 block starts here.
c .
50 CONTINUE
Y=X2
YC=X2-(1.0-X1) *ALOG(1.0+Y/X1)
60 CONTINUE
Y=0.5% (Y+YC)
YC=X2-(1.0-X1) *ALOG(1.0+Y/X1)
ERROR=ABS (Y-YC) / (Y+X1)
IF (ERROR.GT.DELTOL) GO TO 60
GO TO 90
C
C Case 4 block starts here.
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70 CONTINUE
¥=0.0 _
T=(X2-Y)/(1.0-X1)
YC=X1*EXP (T)-X1
80 CONTINUE
Y=0.5% (Y+YC)
T=(X2-Y)/(1.0-X1)
YC=X1*EXP (T)-X1
ERROR=ABS (Y-YC) / (Y+X1)
' IF (ERROR.GT.DELTOL) GO TO 80
90 CONTINUE
F=Y
100 CONTINUE
RETURN
END
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